
CUDA Execution Model
Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

GPU(Device) is a coprocessor to the CPU(Host)
Cpu launches execution of a kernel on GPU
Kernel – function executed by each thread of the
GPU. Accepts arguments.
Kernel has the following configuration parameters
(specified at compile time):
Grid size =#Blocks to be launched by the kernel
call.
Thread Block size = # Threads grouped in an
execution unit called “block”.
•1 Thread Block is executed on 1 SM
•1 SM can execute multiple thread blocks
simultaneously. Max number of blocks to run sim.
determined by several parameters (number of
threads in block, shared memory usage, register
usage) . Total max number of blocks to be run by
1 kernel is however determined by device
capabilities.
•Threads are scheduled in units called warps (1
warp = 32 threads).
Total number of threads for execution = grid
size*block size

Typical latency for launching kernel and transfering ~5
parameters: 0.02ms on “hot wire”. First call always
much slower – GPU requires warm-up!

Threads and blocks have IDs

2

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device memory

Shared Memory

Instruction

Unit

Processor 1

Registers

…
Processor 2

Registers

Processor M

Registers

Constant

Cache

Texture

Cache

Global, constant, texture memories

GeForce 8800 Characteristics:
Device 0: "GeForce 8800 Ultra“
Total amount of global memory: 804978688 bytes
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 8192 bytes
Warp size: 32 Threads
Maximum total number of threads per block: 512
Maximum sizes of each dimension of a block: 512x512x64
Maximum sizes of each dimension of a grid: 65535x65535x1
Maximum memory pitch: 262144 bytes
Texture alignment: 256 bytes
Clock rate: 1512000 kilohertz

G80 Series has 16 Streaming Multiprocessors
(SM), each with:
• 8 Streaming Processors (ALUs)
• 1 Instruction Unit
• 16KB Shared Memory (on chip, fast access)
• A set of 32-bit registers (8KB Register File)

CUDA Hardware Architecture

Each thread block of a grid is split into warps, each gets executed by one multiprocessor (SM). Each thread block is
executed by one multiprocessor, so that the shared memory space resides in the on-chip shared memory.

A multiprocessor can execute multiple blocks concurrently: Shared memory and registers are partitioned among the
threads of all concurrent blocks. So, decreasing shared memory usage (per block) and register usage (per thread)

increases number of blocks that can run concurrently

CUDA Memory Architecture Overview
(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

Global memory
•Main means of communicating with PC
•R/W Data between host and device
•Contents visible to all threads
Texture and Constant Memories
• Constants initialized by host
Shared memory
•Private to thread block.
• Access can be syncronised to avoid data hazards.
Local Memory
•private to each thread but slower than registers,
or shared memory

Memory Location Cached Access Latency Who

Local Off-chip -DRAM No Read/write 100s of cycles One thread

Shared On-chip N/A - resident Read/write 1 cycle (same as registers!) All threads in a block

Global Off-chip No Read/write 100s of cycles All threads + host

Constant Off-chip Yes Read 100s of cycles All threads + host

Texture Off-chip Yes Read 100s of cycles All threads + host

Each thread can:
Read/write per-thread registers/local memory

Read/write per-block shared memory

Read/write per-grid global memory

Read only per-grid constant/texture memory

The threads can be synchronized on the
thread block level, but can not be
syncronised on the grid level!!!

Starting CUDA Development

• Analyze Matrix Multiplication Example:
http://courses.ece.uiuc.edu/ece498/al1/lectures/lecture2%20cuda%20fall%202007.ppt

• Install Visual Studio and CUDA Development Pack (Driver+SDK+Toolkit), available here:

http://www.nvidia.com/object/cuda_get.html

• (!)Read release notes to start-up (contains installation instructions and how to start)

• To create your first CUDA project follow these steps (from release-notes):

– 1. Copy the content of "NVIDIA CUDA SDK\projects\template" to a directory of your own "NVIDIA
CUDA SDK\projects\myproject“

– 2. Edit the filenames of the project to suit your needs

– 3. Edit the *.sln, *.vcproj and source files. Just search and replace all occurences of "template" with
"myproject".

– 4. Build the release, debug, emurelease, and/or emudebug configurations using myproject.sln or
myproject_vc7.sln.

– 5. Run myproject.exe from the release, debug, emurelease, or emudebug directories located in
"NVIDIA CUDA SDK\bin\win32\[release|debug|emurelease|emudebug]". (It should print "Test
PASSED".)

• To understand CUDA Architecture and start developing read CUDA Programming Guide 1.1.

• Occupancy Analysis:

– Compile CUDA project with –keep

– Review .cubin file

– Fill-in the shared memory usage and number of threads per block into occupancy calculator

