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Abstract:

This study treats architecture and implementation of a FPGA accelerator for double-precision 
floating-point matrix multiplication. The architecture is oriented towards minimising resource 
utilisation and maximising clock frequency. It employs the block matrix multiplication algorithm 
which returns the result blocks to the host processor as soon as they are computed. This avoids 
output buffering, and simplifies placement and routing on the chip. The authors show that such 
architecture is especially well suited for full-duplex communication links between the accelerator 
and the host processor. The architecture requires the result blocks to be accumulated by the host 
processor; however, the authors show that typically more than 99% of all arithmetic operations are 
performed by the accelerator. The implementation focuses on efficient use of embedded FPGA 
resources, in order to allow for a large number of processing elements (PEs). Each PE uses 8 Virtex-
6 DSP blocks. Both adders and multipliers are deeply pipelined and use several FPGA-specific 
techniques to achieve small area size and high clock frequency. Finally, the authors quantify the 
performance of accelerator implemented in Xilinx Virtex-6 FPGA, with 252 PEs running at 403 
MHz (achieving 203.1 GFLOPS), by comparing it to DGEMM function from MKL, ACML, 
GotoBLAS and ATLAS libraries executing on Intel Core2Quad and AMD Phenom X4 
microprocessors running at 2.8 GHz. The accelerator performs 4.5 times faster than the fastest 
processor/library pair.
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1. Introduction

Today’s  FPGAs  are  fast  and  large  enough  to  allow hardware  implementation  of  various 

algorithms that  work faster  compared to  their  software-only counterparts  executing on general-

purpose microprocessors [1], [2], [3], [4], [5]. There is a plethora of research efforts regarding the 

use of FPGA accelerators to speed up critical parts of computationally-intensive programs. They 

vary in scope and way in which acceleration is accomplished; however, they all rely on some kind 

of  parallelism,  and  their  performance  is  determined  by  the  number  of  concurrently  working 

functional units.

Due to its significance in science and engineering, matrix multiplication methods and their 

optimisations are a very often studied subject in the field of both software and hardware design. Its 

inherent  parallelism is  especially interesting from the aspect  of  various  parallel  and distributed 

systems.  FPGA-accelerated matrix  multiplication  became a viable  faster  alternative  to  software 

implementations from the moment when FPGA started to offer a potentially better multiplication 

performance than  microprocessors,  that  is,  when they started  to  include  a  dedicated  multiplier 

blocks [6].

1.1. Related work

There  are  several  recent  works  which  treat  the  problem  of  performing  double-precision 

floating-point matrix multiplication in FPGA. Architecture by Dou et al.  [7] consists of a master 

processor  and a  linear  array of  P processing elements.  The master  processor  divides  the input 

matrices into tiles with dimensions  Si  x  N and  N x  Sj,  respectively,  and schedules them to the 

processing array, which calculates one  Si x  Sj block of the result before moving to the next one. 

Each processing element (PE) contains one multiplier and one adder, two register banks with Si/P 

words of storage for storing elements of the first matrix, and two register banks with Si×Sj/P words, 

for storing intermediate results. Elements of the second matrix are not reused, and therefore not 

stored. The total used local storage is M = 2×Si+2×Si×Sj words, and the required input bandwidth at 

maximum performance is B=2×P /√M /2 words per clock cycle.

Zhuo and Prasanna  [8] give the comprehensive overview of previous works on integer and 

single-precision matrix multiplication in FPGA, and identify the challenges associated with their 

possible expansion to double-precision arithmetic. They then introduce two architectures, and three 

corresponding algorithms. The first two algorithms work with small matrices (those which can fit 

into accelerator internal memory), which allow them to achieve the optimal latency depending on 

the available  communication bandwidth.  Both algorithms divide input  matrices into rectangular 
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blocks,  but  differ  in  number  of  multipliers  and adders  per  processing  element,  and number  of 

required processing elements for a given size of input matrices. The third algorithm is suitable for 

larger matrices, and uses the block matrix multiplication algorithm with square blocks. It employs a 

linear list of processing elements, each with one multiplier and one adder, similarly to architecture 

by Dou et al. [7]. However, it swaps the execution order of the two inner loops, out of three loops 

which constitute the matrix multiplication algorithm. In that way, there is no need for two sets of  

registers, and for a given local memory size M and number of processing elements P, the algorithm 

requires input bandwidth B=2×P /√M .

Architecture by Kumar and al.  [9] uses an algorithm for scheduling input data to processing 

elements which has the same loop execution order as that of Zhuo and Prasanna  [8]. However, 

instead of a systolic array-like structure (in which every PE communicates only with the adjacent 

ones), it uses broadcast to distribute  the same elements of the first matrix simultaneously to all PEs. 

The elements of second and resultant matrices are exchanged only with the adjacent PEs, as is the 

case with the other two related works.

All of the three architectures are equivalent to each other, and have the same performance of 

2×P FLOPS per clock cycle. They use the classical block matrix multiplication algorithm, and can 

multiply two square matrices of order N in N3/P clock cycles. They have the form of a linear list of 

processing elements, which allows them to be scalable, that is, easily expandable to larger devices 

or multiple FPGAs. The architectures are also modular, because they treat floating-point arithmetic 

blocks as modules, which can be interchanged with modules having different implementation or 

characteristics, without affecting the properties of the architecture. Finally, all of the architectures 

have balanced processing power and bandwidth requirements. This represents the optimal use of 

available  resources,  as  the  computing  and  communication  phases  completely  overlap.  The 

respective papers also discuss trade-offs between local memory size and required communication 

bandwidth. However, they do not distinguish between input and output bandwidth, and take into 

account only their aggregate value. This is appropriate when communication channel is bus-based, 

and therefore half-duplex. However, as the full matrix multiplication has highly asymmetric traffic 

patterns in inbound and outbound directions, and, as the most backplane and network technologies 

transition to point-to-point, full-duplex architectures (the notable example being PCI-Express), that 

leave the communication channel in outbound direction almost unutilised.

Dou  et  at.  [7] implement  double-precision  floating-point  units  which  are  IEEE-754  [12] 

compliant, with the exception of denormal number support. They use FPGAs with 18x18 integer 

multiplier blocks, and construct a floating-point multiplier from 9 such blocks. Work of Kumar et 

al.  [9] is more recent, and use FPGAs with 25x18 multipliers. In spite of that, their floating-point 
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multiplier design require 13 such blocks. The level of IEEE-754 compliance is the same as that of  

Dou  et  at.  [7].  Zhuo  and  Prasanna  [8] describe  three  floating-point  multiplier  and  adder 

implementations  with  different  level  of  IEEE  standard  compliance:  the  “fully-compliant”, 

“moderately-compliant” (similar to those in [7] and [9]) and “least-compliant” (which, in addition 

to the absence of denormal support, also lack all the rounding modes except “round toward zero” 

and does not generate exceptions). They specify the number of pipeline stages, area, and clock 

frequency for adders and multipliers using all  three level of compliance.  However, they do not 

include implementation details and number of used multiplier blocks.

The reported single-FPGA maximum performance figures are: 15.6 GFLOPS with 39 PEs at 

200 MHz [7], 6.7 GFLOPS with 20 PEs at 170 MHz [8], and 29.8 GFLOPS with 40 PEs at 373 

MHz  [9] (“algorithm 3”,  with unspecified level  of IEEE standard compliance) for large square 

matrices. Although it is not possible to directly compare the results, because they were published 

over a time span of several years and use different FPGA devices, the measured results confirm  the 

predicted performance of 2×P FLOPS per clock cycle for all of them. Zhuo and Prasanna [9] report 

the performance of their FPGA accelerator as “comparable with that of the state-of-the-art general-

purpose processors” executing matrix-multiplication function from Intel MKL library. However, it 

is not clear how the results reported in the other two papers compare to the performance of general-

purpose microprocessors from the corresponding time periods.

1.2. Essence of the proposed approach

Existing  solutions  to  FPGA-accelerated  dense  matrix  multiplication  problem  have  very 

similar architectures, because they all depend on the classic block matrix multiplications algorithm. 

Faster algorithms do exist  [10],  [11], however, they are much more complex, and generally not 

suitable  for  hardware  implementation.  Since  there  is  not  much  room for  improvements  in  the 

architectural domain, it is possible to achieve better performance primarily by implementing larger 

number of smaller and faster floating-point units.

This  paper  presents  an  architecture  and  implementation  of  a  FPGA  accelerator  for 

multiplication of matrices in IEEE double-precision format, which aims to be as fast as possible by 

using the following techniques, not found in other related works:

• A block matrix multiplication architecture which returns the result blocks as soon as they are 

computed, and leaves their final accumulation to the host processor. This allows for a less 

constrained  placement  and routing  on  FPGA,  and consequently higher  clock frequency. 

Such architecture  also  exhibits  a  much more  symmetric  communication  pattern  (similar 

inbound and outbound bandwidth requirements), which make it especially well suited for 
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full-duplex communication links. We show that the additional load exhibited on the host 

processor is relatively small, as the accelerator computes all multiplications and almost all 

(n-1 out of n) additions.

• Implementation of floating-point units in an efficient way, with only 8 embedded FPGA 

25x18  integer  multiplier  blocks  per  floating-point  multiplier.  This  allows  realisation  of 

larger number of processing elements. The floating-point units are also deeply pipelined, 

which contributes  to  the high clock frequency,  but  also in  some instances  reduces  area, 

because  it  allows  better  utilisation  of  embedded  blocks.  We  show  that  the  latencies 

associated with the deeper pipelines do not have any negative implications, as they are in 

any case much smaller than the other latencies present in the system.

After  presenting  the  accelerator  architecture  and  implementation,  we  quantify  the 

performance  gain  of  doing  FPGA-accelerated  matrix  multiplication,  in  comparison to  software 

implementations  from  several  high-performance  libraries,  executing  on  commodity 

microprocessors. We take into account the current state of the art in both microprocessor and FPGA 

technology. Modern microprocessors perform very well, because they have high clock frequencies, 

multiple cores, and appropriate support in the form of floating-point vector SIMD units. However, 

we  show  that  FPGA-accelerated  matrix  multiplication  can  still  achieve  several  times  higher 

performance.

2. Accelerator architecture

The accelerator consists of a linear list of multiplier-adder processing elements (PE), with 

memories for buffering input (and possibly output)  data spread equally across all  PEs (Fig.  1). 

Although the PE connection pattern in the form of a tree is also possible [13], the linear list has the 

advantage  of  a  much  more  regular  structure,  which  allows  simpler  routing  between  PEs  and 

consequently the higher clock frequency. After the initial latency, a list of  n PEs multiply two  n-

element vectors in one clock cycle, or two square matrices of order n in n2 clock cycles. The initial 

latency consists of time necessary to fill the input buffers and time necessary to fill the pipelines of 

multipliers  and  adders.  All  the  subsequent  loading  of  input  data  overlap  with  computation  on 

previously loaded data, and all the pipelines of arithmetic units are constantly full.  The linear list 

architecture can also extend to multiple FPGAs. In that case,  the number of parallel  arithmetic 

operations and the required communication bandwidth increase linearly with the number of FPGA 

nodes.

Let X and Y be matrices with dimensions p×q and q×r, respectively, where p,q,r ≥ n. Matrix 

X consists of i×j and matrix Y consists of j×k blocks of order n, where i = ⌈p/n , ⌉ j = ⌈q/n  and ⌉ k = 
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⌈r/n  (we pad the right and bottom of the matrices with zeros as necessary, in order to have integer⌉  

number  of  blocks).  It  is  possible  to  multiply  the  matrices  X and  Y by  performing  matrix 

multiplication  and  addition  operation  only  between  the  blocks.  The  result  matrix  R,  with 

dimensions  p×r,  consists  of  i×k blocks.  We  now  consider  two  multiplication  algorithms,  one 

suitable for accelerator architecture shown in  Fig. 1a  and the other for accelerator architecture 

shown in Fig. 1b. We refer to the blocks of matrices X, Y and R as Xuv, Yvw, Ruw, respectively, where 

u {1,..., ∈ i}, v {1,..., ∈ j} and w {1,..., ∈ k}.

Algorithm 1: The host computer consecutively sends to the accelerator the blocks of input 

matrices which correspond to the one complete result block, before starting to send the input data 

for calculation of the next result block. It starts with the input blocks used to compute the result 

block R11: X11 and Y11, X12 and Y21, ..., X1j and Yj1 and so on, and in total sends bin
(1) = 2×i×j×k input 

blocks. For the same time period, the accelerator sends back bout
(1)  = i×k result blocks. The ratio of 

input to output traffic is s(1) = bin
(1)/bout

(1 )= 2×j. This algorithm does not require that the host computer 

takes part in computation. However, its drawback is the relatively large bandwidth requirement in 

host – accelerator direction and highly asymmetric traffic pattern.

Algorithm 2: The host computer starts with sending block X11 and than sends all the blocks 

which should be multiplied with it:  Y11,  Y12, ...,  Y1k. The multiplication continues with block X21: 

Y1k is  reused,  and the  row of  Y enters  the  accelerator  in  the  opposite  direction:  Y1k-1,  ...,  Y11. 

Procedure repeats in the same way for all j rows of X and corresponding j columns of Y. The results 

of multiplying consecutive input blocks does not represent parts of the same result block. For that  

reason, the accelerator  can not  add them together (and does not have a FIFO buffer R and an 

additional adder for that purpose), but instead send them immediately to the host computer. The 

host computer must add the each received partial result block to the previously received part of the 

same result block. This additions take place simultaneously with the results reception and, as we 

later show, constitute only a small fraction of all arithmetic operations. In total, the host computer 

sends bin
(2) = (1+k +(1+k-1)×(i-1))×j = (i×k+1)×j input blocks and for the same time period receives 

bout
(2) = i×j×k output blocks. The ratio of input to output traffic is s(2) = bin

(2)/bout
(2) = 1+1/(i×k). The 

worst case,  s(2)=2, occurs for  i=1 and k=1. However, as  i or  k increase,  s(2) decreases rapidly, and 

limi,k→∞s(2) = 1. Therefore, for a sufficiently large i or k, this algorithm has almost equal bandwidth 

requirements in both directions.
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Let  Bin and  Bout be,  respectively,  necessary  input  and  output  communication  bandwidth, 

expressed as number of floating-point words transferred per clock cycle. The total bandwidth is 

BHD=Bin+Bout in  the  case  of  half-duplex  and  BFD=max{Bin,Bout}  in  the  case  of  full-duplex 

communication link. If the block order is n, and the total communication time is Tcomm clock cycles, 

the total number of blocks transferred during time  Tcomm is, for input and output directions, half-

duplex  and  full-duplex  links,  respectively:  bin,  bout,  bHD,  bFD,  where  Bin =  bin×n2/Tcomm,  Bout = 

bout×n2/Tcomm, BHD = bHD×n2/Tcomm and BFD = bFD×n2/Tcomm. For Algorithm 1, bHD
(1) = 2×i×j×k + i×k and 

bFD
(1) = 2×i×j×k. For Algorithm 2, bHD

(2) = (i×k+1)×j + i×j×k = (2×i×k+1)×j and bFD
(2) = (i×k+1)×j. 

When  utilising  half-duplex  links,  both  algorithms  have  approximately  equal  bandwidth 

requirements,  bHD
(1)  ≅ bHD

(2). When utilising a full-duplex link, Algorithm 2 require  bFD
(1)/bFD

(2) = 

2×i×k /(i×k+1) = 2/s(2) times less bandwidth. For k=1, there is no bandwidth reduction. However, for 
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Fig. 1: Two variants of a FPGA accelerator for matrix multiplication, organized as a linear list of n processing elements 
(PE). Each PE consists of a multiplier, adder and BRAMs X and Y for storing input data. In variant (a), there are also 
BRAMs R for  storing  intermediate  results,  connected  as  a  circular  FIFO.  Memories  X  store  rows  of  the  first  and 
memories Y columns of  the second operand matrix. In each clock cycle, accelerator performs  n multiplications,  n-1 
product accumulations and multiplies two  n x  n matrices in  n2 clock cycles. The input matrices can be the blocks of 
larger matrices. The FIFO R in variant (a) facilitates the multiplication of block matrices, by storing a block of the result, 
until the accelerator multiplies and accumulates all the corresponding input blocks. There is also an additional adder for 
that purpose. FIFO’s total size is n2 elements, and in each clock cycle elements rotate to the left. When the multiplication 
of the last block completes, the multiplexer MX allows the FIFO contents to be shifted out and sent to the host computer. 
Variant  (b)  immediately  returns  elements  of  multiplied  matrices  without  buffering.  In  the  case  of  block  matrix 
multiplication, it relies on the host computer to add together matrices representing parts of a resultant matrix block. This 
variant has the advantage of being simpler and easier to place and route, and also uses less BRAM resources.



a sufficiently large k, Algorithm 2 reduces the required bandwidth almost by a factor of two. The 

rest of this paper discuss Algorithm 2 and the corresponding accelerator architecture shown in Fig.

1b.

Before the matrix multiplication starts, the host computer must send to the accelerator the 

initial n2 elements of X11 and n2 elements of Y11 blocks (these 2×n2 elements are distributed as 2×n 

elements in each of n PEs). It takes the next n2 clock cycles to multiply the two blocks. During that 

time, the accelerator  loads  n2 elements of matrix  Y21 and multiplication continues  according to 

Algorithm 2. If the new blocks keep coming at the same rate, all the multiplier and adder pipelines 

work without stopping. The accelerator produces one element of the result block in each clock 

cycle. The initial latency before producing first result Ti is equal to the time necessary to load initial 

data and latency through n multipliers and n-1 adders, Ti = 2×n2 + dm×n + da×(n-1), where dm and da 

are, respectively, multiplier and adder latencies. The value of  Ti is implementation dependent and 

we further discuss it in chapter 4.

The accelerator with clock frequency f performs n multiplications and n-1 additions in each 

clock cycle and therefore the total of P = (2×n-1)×f floating-point operations per second (FLOPS). 

The one remaining addition is  done on the host  processor,  which,  in  total,  performs 1/n of  all 

additions. However, the more useful measure of accelerator performance is the time necessary to 

multiply  two  matrices  of  given  size.  According  to  Algorithm  2,  the  accelerator  can  multiply 

matrices X and Y in Tcomp = i×j×k×n2 clock cycles, or Tcomp×f seconds. According to the equations 

for  BHD and  BFD,  Tcomm =  bHD×n2/BHD =  (2×i×k+1)×j×n2/BHD and  Tcomm =  bFD×n2/BFD = 

(i×k+1)×j×n2/BFD. Because communication and computation phases overlap, we can calculate the 

required communication bandwidth  BHD and  BFD from relation  Tcomm =  Tcomp. BHD = (2×i×k+1)×j/

(i×j×k) and BFD = (i×k+1)×j/(i×j×k) words per clock cycle.

In order to compare the proposed architecture to the works which assume square matrices, we 

now analyse  the  case  when  i=j=k.  The expressions  for  the required bandwidth become:  BHD = 

(2×k3+k)/k3 and BFD = (k3×k)/k3. The worst case, BHD=3 and BFD=2, occur for k=1. This is expected, 

as in that case input data do not represent blocks of larger matrices, and there is no potential for data 

reuse.  However,  for  k=2,  bandwidth  requirements  are  already  much  lower,  at  BHD=2.25  and 

BFD=1.25 words per clock cycle, and limk→∞BHD = 2, limk→∞BFD = 1.

The Algorithm 1 is equivalent to the third algorithm from [8], and algorithms from [7] and [9] 

when they use minimal  local  memory size  of  Ω(k2)  words.  They have the constant  bandwidth 

requirements of BHD=3 and BFD=2 words per clock cycle. All of the related papers further pursue the 

idea  of  data  reuse  by  allowing  lower  input  traffic  at  the  expense  of  larger  input  buffers.  For 

memory of size M words, and p processing elements, they require √M / p times lower bandwidth 
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in input direction. This leads to more complex block scheduling algorithms, which use more logic 

and memory resources. That, in turn, limit the number of PEs which can be implemented on a chip, 

and also has negative impact on maximum achievable clock frequency. In contrast to this approach, 

our Algorithm 2 reuse input blocks exactly to the extent needed to perfectly balance traffic in both 

directions.  Thus,  it  is  able  to  optimally  utilise  full-duplex  links  and  has  a  relatively  simple 

architecture.  This  simplicity,  together  with  an  efficient  implementation  of  floating-point  units, 

allows us to place more PEs on a chip than previously possible, and consequently achieve better 

performance.

3. Implementation of floating-point units

When  utilising  embedded  multipliers  and  memories,  FPGAs  use  about  20  times  more 

transistors for the same amount of logic than standard-cell-based ASICs [14]. The difference is even 

larger  in  comparison  to  integrated  circuits  based  on  full-custom  design  (such  as  commodity 

microprocessors).  As a consequence,  clock speed of FPGAs is  typically an order of magnitude 

lower than that of microprocessors and the only way to accomplish better performance is by use of 

relatively high level of parallelism. It is desirable to implement as many functional units as possible 

and at the same time maximise their clock frequency.

Design techniques for optimal design of arithmetic circuits in FPGA differ significantly from 

the techniques used in ASIC VLSI design [15]. The reason for this is fixed structure and scarcity of 

general logic resources in FPGAs. For example, multipliers based on large compressor trees and 

two-path floating-point  adders implemented in FPGAs use too much logic and offer low clock 

frequency. At the same time, they might not use specialised resources present in modern FPGAs, 

such  as  embedded  multiplier-adder  blocks  and  fast  carry chains.  Optimal  design  of  arithmetic 

circuits in FPGA require careful consideration of space/time trade-offs and the unique features of 

FPGA technology.

3.1. Design considerations

The  accelerator  is  implemented  using  Xilinx  XC6VSX475T FPGA,  because  of  its  large 

number of embedded multipliers (2016). We report resource utilisation and speed measurements as 

simulated with this device. However, it should be also pointed out that this FPGA does not exist in 

the fastest (-3) speed grade, which imposes an additional limit to the maximal achievable clock 

frequency.

3.2. Addition / subtraction

To perform a two-operand floating-point addition/subtraction, it  is necessary to assure that 
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both  operands  have  the  same  exponent  by  right  shifting  the  mantissa  of  the  smaller  one  and 

increasing  its  exponent  accordingly,  add  the  mantissas  if  they  have  the  same  sign  (effective 

addition), or subtract the smaller mantissa from the larger otherwise (effective subtraction). Sign of 

the result is equal to the sign of the larger mantissa. It may then be necessary to normalise the result  

by shifting it one place to the right (in the case of effective addition) or up to n places to the left (in 

the case of effective subtraction), where  n is the width of the mantissa. Finally, it is necessary to 

round the  result  according  to  the  chosen  rounding  mode.  We use  this,  “classic”  algorithm for 

floating-point addition, because it has the minimal resource requirements. Variants which use dual 

data paths, leading zero prediction and rounding before final normalisation offer lower latency, at 

the cost of much greater complexity [16]. They are commonly used in microprocessors and other 

designs requiring low latency, but they are not practical for FPGA implementation.

The floating-point adder consists of da=10 pipeline stages, A1–A10. In stage A1, we compare 

mantissas  and  calculate  exponent  difference,  which  determine  the  number  of  places  smaller 

mantissa should be shifted to the right. In order to compute correctly rounded results (as defined in 

[12]), we extend the right side of the operands with three additional bits (guard, round and sticky 

bit,  respectively),  which  are  initially  zero.  In  stage  A2,  there  are  three  levels  of  logic,  each 

implementing a funnel shifter. The usual approach is to use six shifters, in order to perform a 32, 16, 

8,  4,  2  and  1  bit  shifts.  However,  the  six-input  LUT architecture  of  the  target  FPGA allows 

combining two shifts in the same LUT, thus reducing the number of required logic levels. We or 

together all the bits which are shifted out, and keep them as the rightmost (sticky) bit. In stage A3, 

mantissas are swapped if necessary, in order to assure that first mantissa is always the larger one. 

We perform the addition/subtraction with ripple-carry adder which use one LUT per result bit and a 

dedicated  fast  carry-propagation  chain.  Although  the  adder  is  very  efficient  in  terms  of  used 

resources, its propagation delay increases linearly with operand size [17] and with 56-bit operands it 

becomes a clock-limiting factor. Since, for this purpose, low logic count and high clock speed are 
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Fig. 2: Using smaller adders to implement a larger one – (a) the carry-select approach, often used in ASICs, assume that 
multiplexer complexity and propagation delay is much lower than that of an adder. However, in a FPGA, both multiplexer 
and a ripple-carry adder use one LUT per bit. (b) The simple ripple-carry adder divided into two pipeline stages achieves 
the same performance, while using approximately two times less resources.



more important than low latency, we spread the adder through two pipeline stages, A4 and A5 (Fig.

2b). Stages A6 and A7 contain the leading zero counter. It functions by computing the logic or of 

the adjacent 4-bit groups of the result and then repeating the same procedure on the resultant bits 

(which correspond to the 16-bit groups in the original result). The calculated values represent the 

contiguous groups of 4 and 16 zeros in the result.  By priority encoding them, it  is possible to 

determine the number of leading zeros. Stage A8 contains the normalisation left shift. The rounding 

addition takes place in the stages A9 and A10 (with adder split according to Fig. 2b).

The adder supports operations with subnormal numbers. The resource utilisation is 871 LUTs 

and 1022 flip-flops and achieved clock frequency is 509.94 MHz.

3.3. Multiplication

To perform a floating-point multiplication of two operands, it is necessary to multiply their 

mantissas, add exponents, and calculate the result sign as xor of operand signs. The most complex 

part is the multiplication of the mantissas. In the case of IEEE double precision format, mantissas 

are 53 bits wide, and their efficient (both in area and speed) multiplication on FPGA require the use 

of embedded multiplier-adder blocks.  In Xilinx Virtex-5 and Virtex-6 devices,  these blocks are 

called DSP48E and DSP48E1, respectively, and contain a 25×18 bit signed multiplier (24×17 bit 

unsigned), followed by a 48-bit adder with 17-bit shifter before its other input.

There are several ways to use DSP48E/E1 blocks as “tiles,” parts of a larger multiplication 

parallelogram  [18].  Each block compute one partial  product,  and add it  together with a part  of 

previously computed result. We propose the design shown in Fig. 3, to maximise the use of internal 

48-bit adders for accumulating partial products. Variant (a) uses fewer DSP48E/E1 blocks, but more 

LUTs. Because of the overall availability of logic resources in the target device, we use variant (b).

The floating-point multiplier consists of dm=17 pipeline stages, M1–M17. The relatively large 

number of stages is  necessary because DSP48E/E1 blocks require two clock cycles in order to 

execute multiplication  and addition at  full  speed.  For  that  purpose,  they have internal  pipeline 
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Fig. 3: Implementing 53×53 bit unsigned integer multiplier using Virtex-5 DSP48E or Virtex-6 DSP48E1 blocks. Multiplier 
(a) uses 6 DSP48E/E1 blocks and more LUTs, while multiplier (b) uses 8 DSP48E/E1 blocks and less LUTs. Variant with 
7 DSP48E/E1 blocks is also possible.



registers after both multiplier and adder. We use blocks VII and VIII as 5×24 bit multipliers, and the 

other six blocks (I, II, III, IV, V and VI) as 24×17 bit multipliers. In stage M1, we calculate the 

exponent and sign of the result, and also the partial product corresponding to block VII and the 

partial products which do not use DSP blocks (the dark-coloured areas in Fig. 3b). Multiplications 

corresponding to blocks I and VIII take place in stage M3 and those corresponding to blocks II, III, 

IV,  V and  VI  in  stages  M5,  M7,  M9,  M11  and  M13,  respectively.  The  adder  in  each  block 

accumulate the parts of the result which are located above and to the right from it (as in Fig. 3b) and 

calculated in previous stages. Those additions take place in stages M2, M4, M6, M8, M10, M12 and 

M14. Because the rightmost 52 bits of the complete 106-bit product are necessary only to calculate 

the sticky bit, we can or them together as soon as they are computed. In stage M15, we normalise 

the result mantissa and compute the rounding digit. If we assume that input numbers are normal 

(MSB=1), the multiplication result can be either normal, or may require a single normalisation left 

shift. The rounding takes place in the stages M16 and M17 (using a two-stage adder as in Fig. 2b).

The resource  utilisation is  447 LUTs and 520 flip-flops  and achieved clock frequency is 

492.12 MHz. The described multiplier work only with normal operands. It is relatively easy to add 

support  for subnormal numbers  by placing leading zero counters and left  shifters on multiplier 

inputs (to pre-normalise the mantissas), while increasing the exponents width from 11 to 17 bits 

(since log⌈ 2(53)  = 6). It is also necessary to add a right shifter in the last stage, to accommodate for⌉  

a possible result mantissa conversion to subnormal format. The cost of this additional logic (if we 

implement it as described in chapter 3.2) is 727 LUTs and 635 flip-flops. We do not implement the 

subnormal number support, because of the limited space in the target device. Instead, we treat all 

subnormal input values as zeros

4. Numerical results and discussion

Considering  the  size  of  the  target  device,  there  are  n=252  processing  elements  in  the 

accelerator. Each PE uses 8 DSP48E1 blocks and four 36 kb BRAMs. The two of them implement 

buffers X and the other two buffers Y. Each X or Y buffer in each PE can store 4n=1008 unpacked 

double-precision floating-point numbers. Although the capacity of 2n entries would be sufficient for 

double-buffering (the accelerator works with one input block while it receives another), we use 4n 

entries to fully utilise the BRAM resources available in the target device. The larger input buffers 

allow for an easier amortisation of communication speed variations, thus reducing the chance for 

buffer underflow condition, which would inevitably result in pipeline stall.

The total resource utilisation (excluding PCI-Express related logic) is 290556 LUTs, 433692 

flip-flops,  2016 DSP48E1 blocks and 1008 RAMB36E1 blocks.  With automatic  placement and 
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routing and “balanced design goal” options, Xilinx ISE toolchain achieves clock frequency of 161 

MHz. To obtain better results, we manually floor-plan and partition the whole design, in order to 

group together the resources used by individual PEs and precisely position the PEs relative to each 

other. Although the PEs do not form a circular array (ring), we “fold” their linear structure in half, 

so that PE1 and PEn are physically adjacent and located next to the control unit. The achieved clock 

frequency of the accelerator is f = 403.87 MHz. This corresponds to the performance of p = (2×252-

1)×0.40387 = 203.1 GFLOPS. It should be noted that we obtained this results using simulation of 

the target FPGA device. Due to the factors outside the FPGA, such as communication or software 

latencies, the performance on the actual hardware could be lower. However, similar works which do 

include a real-world performance figures (such as  [8]), show that this slowdown is typically not 

significant.

If we consider equation for initial latency Ti, and take into account that n=252,  dm=17,  da=10, 

we  can  see  that  the  first  term  2×n2=127008  is  much  larger  then  the  sum  of  the  other  two: 

dm×n+da×(n-1) = 6794. This means that it is possible to use deeply pipelined adders and multipliers, 

virtually without affecting the total latency.

The target  device  has  an  integrated  PCI-Express  2.0 8x  endpoint  which  can  be  used for 

communication with the host computer. Its bandwidth of 4 GB/s in each direction, with accelerator 

clock frequency of 403 MHz and 64-bit floating-point words, is equal to BFD = 4096/403/8 = 1.27 

word per clock cycle. Considering square matrices of order k×n (k ) and equation for∈ℕ  BFD, k must 

be at least 2 in order for this communication link to not limit the accelerator performance. The 

simulated execution times are given in Table 1.

In order to compare the accelerator performance to that of microprocessors, we measure the 

time necessary to execute a double precision matrix multiplication (DGEMM) function from four 

highly  optimised  BLAS  libraries,  with  randomly  generated  square  matrices,  on  two  different 

computers  with comparable microprocessors.  Both microprocessors  are  manufactured in  45 nm 

process and belong to the same technological generation as the 40 nm Virtex-6 FPGA. We observe 

the similar performance in all processor/library combinations (Table 1). Since this measurements 

are used only in order to establish a baseline software implementation, we do not analyse the small  

differences which exist between them.

Table  1:  Performance of  the proposed accelerator  (403 MHz,  252 processing elements) in  comparison to  software 
implementations on general-purpose processors. Processor P1 is Intel Core2Quad Q9550 (2.84 GHz, 12 MB cache). 
Processor  P2  is  AMD Phenom II  X4  925 (2.81  GHz,  8  MB cache).  Libraries  are,  respectively:  L1-Intel  MKL,  L2-
GotoBLAS, L3-AMD ACML, L4-ATLAS.

matr. 
time for multiplication of two square matrices, seconds

our single-thread library version four-thread library version
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order 
FPGA 
accel.

processor P1 processor P2 processor P1 processor P2

L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

2500 0.2 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1

5000 1.3 23 23 24 24 25 24 24 25 6 6 6 6 7 6 6 7

7500 4.2 77 78 78 82 86 80 83 85 20 20 20 21 22 20 20 22

10000 10.1 181 184 186 195 200 190 195 199 46 46 47 50 65 53 49 64

12500 19.7 355 358 370 380 395 371 379 390 89 91 92 96 103 111 96 101

It is interesting to notice that, when multiplying two square matrices of order N, all of the four 

libraries exhibit  time complexity of order O(N3).  This indicate that they use the classical block 

matrix  multiplication,  and  not  some  of  the  faster  algorithms  (such  as  Strassen’s  [10],  with 

complexity of O(N2.807)).  We believe this choice is due to the worse  numerical stability of such 

algorithms.

In comparison with software implementations using only one processor core (single-thread 

library version), the FPGA accelerator is 20 times faster than the slowest and 18 times faster than 

the fastest processor/library combination. In comparison with software implementations using all 

four processor cores (multiple-thread library version), the FPGA accelerator is 5.6 times faster than 

the slowest and 4.5 times faster than the fastest processor/library combination.

The achieved results are consistent with the previously published predictions, according to 

which FPGAs will continue to offer better floating-point performance than microprocessors  [6]. 

However, we believe that with the current generation of FPGAs and microprocessors, this gap has 

reached its maximum, and that it will begin to shrink in the future. We base that prediction on the 

following observations: the recently announced 28 nm Xilinx Virtex-7 FPGA family offer 1.78 

times  more  DSP48E1 blocks  compared  to  Virtex-6,  and also  some marginal  increase  in  clock 

frequency (we do not consider other FPGA manufacturers, such as Altera and Lattice, as they do not 

offer devices of such size). At the same time, 32 nm Intel Sandy Bridge processor offer the vector  

instruction set (AVX) two times wider than the previous SSE, and also better performance per core 

compared to the previous generation of processors [19]. There is currently up to 8 cores per chip (in 

Intel processors), and this number will probably significantly increase in the future [20]. This is not 

to say that FPGA accelerators will not still be able to achieve better performance in the areas for 

which microprocessors do not have direct  support,  but it  will  become increasingly difficult  for 

FPGAs to outperform them in floating-point arithmetic.
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5. Conclusion

This  paper  has  proposed an  architecture  and  corresponding  implementation  for  a  FPGA-

accelerated  floating-point  matrix  multiplication.  To our  knowledge,  it  is  the  first  such work to 

demonstrate not only comparable,  but several times faster performance than that of commodity 

microprocessors from the same technological generation. 

The  architecture  is  as  simple  as  possible,  in  order  to  minimise  resource  utilisation  and 

maximise clock frequency. The employed block matrix multiplication algorithm sends the result 

blocks to the host processor as soon as they are computed. The consequence of this approach is that, 

while all multiplication and almost all additions are done in FPGA, 1/n of all additions, where n is 

block order, must be performed on the host processor. However, this number is very small: in our 

implementation,  n=252,  and  1/n=0.4  %.  Because  the  output  blocks  are  not  buffered  in  the 

accelerator, it generates traffic of similar intensity in both inbound and outbound directions. This 

makes the architecture well-suited for full-duplex communication links. The drawback is somewhat 

limited flexibility, as the block order is equal to the number of processing elements, and the used 

internal memory size is implicitly tied to the communication link speed. As in related works, the 

performance depends on communication link speed. However, the proposed architecture has the 

advantage  of  requiring  less  bandwidth  as  the  size  of  input  matrices  increase.  The  proposed 

communication link is 4 GB/s PCI-Express. With the available bandwidth, and considering square 

matrices, the full speed is achieved for input matrices of order 2×n and larger.

The implementation is also performance-oriented, and focuses on efficient use of embedded 

FPGA resources. Each PE uses 8 DSP blocks, which allows for a total of 252 PEs. In comparison, a 

related work based on the same size DSPs [8] require13 DSP blocks per PE. We have also proposed 

a multiplier design with 6 DSP blocks (which would equal to 336 PEs), however it would require 

the  target  device  with  more  general-logic  resources.  Both  adders  and  multipliers  are  deeply 

pipelined  and use  several  FPGA-specific  techniques  to  achieve  small  area  size  and high clock 

frequency.  They  can  be  readily  reused  in  any  other  project  related  to  FPGA floating-point 

arithmetic.

We  have  compared  the  accelerator  performance  with  that  of  high-end  general-purpose 

microprocessors.  In  order  for  comparison  to  be  as  objective  as  possible,  we  have  performed 

measurements using processors with large amounts of cache memory and high clock frequency, 

executing matrix multiplication functions from highly optimised libraries. The FPGA accelerator 

achieved results 18 times better than the fastest single-core, and 4.5 better than the fastest four-core 

software implementation.
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