Using Arithmetic Coding for Reduction of
Resulting Simulation Data Size on Massively
Parallel GPGPUs

Ana Balevic, Lars Rockstroh, Marek Wroblewski, and Sven Simon

Institute for Parallel and Distributed Systems, Universitaetsstr. 38, 70596 Stuttgart,
Germany
ana.balevic@ipvs.uni-stuttgart.de

Abstract. The popularity of parallel platforms, such as general pur-
pose graphics processing units (GPGPUs) for large-scale simulations is
rapidly increasing, however the I/O bandwidth and storage capacity of
these massively-parallel cards remain the major bottle necks. We pro-
pose a novel approach for post-processing of simulation data directly on
GPGPUs by efficient data size reduction immediately after simulation
that can considerably reduce the influence of these bottlenecks on the
overall simulation performance, and present current performance results.

Keywords: HPC, GPGPU, I/O Bandwidth, Data Compression, Arith-
metic Coding.

1 Introduction

In general, simulations require not only high amount of computing power but
also the transfer and storage of large amounts of data. Due to high computa-
tional requirements, large-scale simulations are typically conducted on parallel
systems comprising of multiple computing nodes. With recent advances in de-
velopment of massively parallel graphics cards suitable for general purpose com-
putations (GPGPUs) and their general affordability, with prices as low as $400
per unit (2008) featuring up to 128 streaming processors, the computers used
in simulations are increasingly equipped with one or more GPGPUs integrated
as arithmetic co-processors that enable hundreds of GFLOPs of raw processing
power in addition to the CPU.

One of the major bottlenecks of such parallel computing systems, besides
the storage of large amount of data, is the I/O bandwidth required for run-time
communication and synchronization of numerous processing elements, as well as
the transfer of the resulting data from the arithmetic co-processors to the central
processing unit. As the time spent in data transfers between computational
nodes can significantly reduce observed speedups and thus severely influence
the performance benefit of using a parallel system for computations, there is a
demand for novel approaches to the storage and transfer of data.

The study of data compression algorithms in the computer science has re-
sulted in efficient coding algorithms such as Huffman coding, Arithmetic/Range
coding, Lempel-Ziv family of dictionary compression methods and various trans-
forms such as Burrows-Wheeler Transform (BWT), that are now a part of widely
used compression utilities, such as Zip, RAR, etc as well as image and video
codecs. In this paper we explore use of entropy coding algorithms on high per-
formance computing systems containing massively parallel GPGPUs, such as
NVidia GeForce 8300 GT, for efficient stream reduction by processing of the re-
sulting simulation data in between the simulation steps, and prior to the transfer
and storage on the host computer.

The paper is structured as follows. In Section 2, the current approaches to
data size reduction on GPUs are reviewed. An overview of fundamental compres-
sion methods is given in Sections 3 and 4. Section 5 presents design of a block-
parallel entropy coding algorithm. Sections 6 and 7 give current performance
results in compression of floating-point data from a light scattering simulation
on a GPGPU, and an overview of the future research.

2 Related Work

The popularity of parallel platforms, such as GPGPUs for large-scale simulations
is rapidly increasing, however the I/O bandwidth and storage capacity of GPG-
PUs remain a bottle neck. In simulations of large systems, a variety of approaches
has been used to reduce run-time size of simulation data set. Some common ap-
proaches include different methods for the storage of sparse matrices, use of
reduced precision for calculations, etc. Fast lossless compression approaches to
floating-point data, including the overviews of older approaches can be found in
[1,2]. As GPGPUs impose numerous constraints on the data types that could
be efficiently used for storage of the simulation data, it is worth exploring which
other approaches to the data size reduction are available and could be efficiently
used on GPGPUs. The most notable approaches for data reduction that used
on GPUs are stream reduction and texture compression of computer graphics:

Texture compression is driven by the need for reducing the amount of phys-
ical memory required for the storage of texture images that enhance gaming
experience. A distinctive characteristic of the texture compression is that it pro-
vides a fixed ratio compression coupled with single-memory data access, which
makes it ideally suited for computer graphics. Texture compression is a lossy
data compression scheme, with common implementations being S3TC family of
algorithms (DXT1-DXT5), and DXTC. For gaming purposes, the loss of fidelity
is acceptable and can even account for a perceptually better experience as the
decrease in data size enables the storage of higher-resolution textures in the
memory of a graphics card.

The second notable approach on GPUs is stream reduction, which is the
process of removing elements that are not necessary from the output stream.
Stream reduction is frequently used in multi-pass GPU algorithms, where the
stream output of the first pass is used as the input for the next pass. An efficient

implementation of the stream reduction on GPUs is given in [3], and achieves a
linear performance by using divide-and-conquer approach that is well applicable
to GPGPU block-oriented architectures.

3 Data Compression

Data compression deals with the data size reduction by removing redundancy
from the input data. The theoretical bound of the compression, i.e. the maxi-
mum theoretical compression ratio, is given by Claude Shannon’s Source Coding
Theorem, which establishes that the average number of bits required to represent
an uncertain event is given by its entropy (H). Data compression methods are
classified according to the information preservation to lossless and lossy. Lossless
compression algorithms are used in areas where absolutely accurate reconstruc-
tion of the original data is necessary, such as in compression of text, medical,
scientific data, etc. In the applications targeted toward human end-users, lossy
compression is applied to audio, video and image data in order to provide per-
ceptively (near) lossless or acceptably distorted representation of data by using
perceptual models of the human audio-visual system. We consider two fundamen-
tal lossless algorithms for the compression of the simulation data, which could
be easily combined with intermediate lossy steps, e.g. quantization, if further
increase of the compression ratio at the expense of accuracy is desired:

Huffman Coding: As a statistical lossless data compression algorithm, Huf-
famn coding gives a reduction in the average code length used to represent the
symbols of an alphabet by assigning shorter codewords to more frequent symbols
and vice versa. The Huffman code is an optimal prefix code in the case where
exact symbols probabilities are known in advance and are integral powers of
1/2 [4]. In real-world scenarios, the exact distribution of symbol probabilities is
rarely known in advance, so this means either acceptance of lower compression
rates or use of adaptive Huffman algorithms that provide one-pass encoding and
adaptation to changing statistics of the input data. The major disadvantage of
the adaptive Huffman coding is relatively high cost of tree maintenance oper-
ations, especially in GPU environments, where non-aligned memory access are
penalized in terms of performance. When the symbol probabilities are highly
skewed, which is often in the case of the simulation data, Huffman coding does
not provide good compression rates as the generated codewords, being external
nodes of a binary tree, are always represented by an integral number of bits.

Arithmetic Coding: Arithmetic coding treats the whole input data stream as
a single unit that can be represented by one real number in the interval [0, 1).
As the input data stream becomes longer, the interval required to represent
it becomes smaller and smaller, and the number of bits needed to specify the
final interval increases. Successive symbols in the input data stream reduce this
interval in accordance with their probabilities. The more likely symbols reduce
the range by less, and thus add fewer bits to the coded data stream.

By allowing fractional bit codeword length, arithmetic coding attains the
theoretical entropy bound to compression efficiency, and thus provides better

compression ratios than Huffman coding on input data with highly skewed sym-
bol probabilities. The arithmetic coding gives greater compression, is faster for
adaptive models, and clearly separates the model from the channel encoding [5].
As simulation data is usually biased to certain values (or could be transformed
into a set of biased data e.g. by some sort of predictive coding), we chose to
further experiment with arithmetic coding for simulation data compression on
GPGPUs.

4 Fundamental Principles of Arithmetic Coding

The central concept behind arithmetic coding with integer arithmetic is that
given a large-enough range of integers, and frequency estimates for the input
stream symbols, the initial range can be divided into sub-ranges whose sizes
are proportional to the probability of the symbol they represent[4,5]. Symbols
are encoded by reducing the current range of the coder to the sub-range that
corresponds to the symbol to be encoded. Finally, after all the symbols of the
input data stream have been encoded, transmitting the information on the final
sub-range is enough for completely accurate reconstruction of the input data
stream at the decoder. The fundamental sub-range computation equations are
given recursively as:

low™ = low™ ! + (high" ™ — low™ ') Py(x,) (1)

high™ = low™ ™ + (high™ ™ — low™)Py, (x,) (2)

where P, and P, are the lower and higher cumulative probabilities of a given
symbol (or cumulative frequencies) respectively, and low and high represent the
sub-range boundaries after encoding of the n-th symbol from the input data
stream. As an illustration of the arithmetic coding concepts, a basic encoding to
a real number, for the input sequence 'bac’, with the given symbol distribution
is depicted in Fig. 1. The decoding algorithm works in an analogous way, and
must be synchronized with the encoder. The practical integer-implementation of
the arithmetic coder function according to the same principle as illustrated in
Fig. 1, but uses frequencies of occurrence instead of symbol probabilities and a
range of [0, N), where typically N is an integer value N >> 1.

To avoid arithmetic overflows on 32-bit architectures, a maximally 31-bit
integer range can be used to represent the full range of the coder. To avoid un-
derflows, which would happen if the current sub-range would become too small to
distinctively encode the symbol, i.e. when the upper and lower boundaries of the
range converge, several methods have been proposed for range renormalization[4—
6].

For the range renormalization and generation of the compressed data bit
stream, we use a method of dividing the initial range into quarters described
in detail in [6] that works as follows: After the coder detects that the current
sub-range falls into a certain quarter, it is ensured that the leading bits of the
numbers representing the sub-range boundaries are set, and cannot be changed

107 07

c=23 3
0.7 0.55 -

b=.5 5
0.2 03

a=.2 2
00 = 02

Fig. 1. Example of arithmetic encoding of the input sequence ’'bac’. Symbols of the
alphabet A = a,b,c have probabilities of occurrence P = .2,.5,.3 Final range is
[0.27,0.3). The sequence ’bac’ can be thus coded with 0.27.

by subsequent symbols. A series of scaling operations is conducted, and the set
bits are output one after the other, thus generating the compressed data output
stream. These operations result in the renormalization of the coder range back
to the full supported range, thus eliminating possibility of incorrect en/decoding
due to the range underflow.

5 Block-Parallel GPGPU Arithmetic Encoder

Simulations run on general purpose graphics hardware often produce large amount
of data that after a number of iterations hardly fits into the memory of a graphics
card, thus imposing a need for a memory transfer so that free space is made avail-
able for subsequent iterations. As the frequent data transfers from the memory
of a GPGPU to the host PC reduce the overall performance of the simulation, it
is our goal to lessen the frequency of these data transfers. We propose processing
of simulation data directly on the GPGPUs after each simulation step to reduce
the resulting data size, and thus resources required for the storage and transfer
of results.

First, the simulation data is partitioned into the data blocks as in [7, 3],
which are then processed by a number of replicated coders running in parallel, as
depicted in Fig 2. Each block of simulation data is processed by an instance of the
encoder running in a separate thread. In the CUDA computational model threads
are executed in the thread blocks, each of which is scheduled and run on a single
multi-processor. Our block-parallel encoder implementation can be executed by
multiple blocks containing multitude of threads, where each thread executes the
CUDA-specific code that implements the arithmetic encoding process described
in Sect.4 (Fig.2,Stepl). The data block size, as well as the number of blocks and
threads, is configurable as the compression kernel execution parameter. Based
on different block sizes, different compression ratios are obtained - typically
resulting in higher compression ratio for larger data block sizes.

After the complete input stream is encoded, the coded data blocks are pre-
pared for the storage at the adequate global memory locations, prior to the trans-
fer to the host computer. The first preparation step for storage in the parallel

I Step 0: Split Simulation Data in Blocks ‘

[

| | | | !
| Step 1: Arithmetic Coding l

. - |
{} | Step2 Block Word-Alignement l

-

Step 3: Stream Compaction

I

Step 4: Compressed Data Storage/Transfer ‘

Fig. 2. Block-Parallel GPGPU Simulation Data Compression Process

implementation of encoder on GPGPU is alignment of the coded data bitstream
to the byte or word boundary (Fig.2,Step2). The padding to the boundary in-
creases the compressed data length. The decrease of the performance ratio due
to this operation is dependent on the initial data block length and its entropy
- the larger the resulting coded block is, the smaller difference those couple of
padded bits make.

To obtain highly biased data model, the floating-point numbers from the
simulation are processed on the byte level. Each of 256 possible byte values is
assigned a corresponding symbol. The model constructed in this manner exploits
the statistical properties of data much better than if we would assign each dif-
ferent floating-point value a single symbol, typically resulting in probabilities
highly biased to some symbol e.g. 0x00. Another advantage of this modeling
approach is that it can be without any modification applied to other data types,
without a loss of generality. After byte-level arithmetic encoding, the coded data
is aligned to the word boundary, e.g. 8-bit before transferring the results into
the global memory of device.

The compacted output stream is obtained by the concatenation of the code-
words at the block-level by stream compaction (Fig.2,Step3) that produces a
single continuous array containing the coded data. The concatenation process is
executed fully in parallel on the GPGPU, by creating an array of the coded data
block lengths from the resulting data of encoding process. After generation of
the codewords and alignment to desired word boundary length (i.e. 8-bits or 32
bits), the information on the coded block lengths is used to generate the array
of the pointers to the starting positions of the coded data coming from parallel
coders by using parallel prefix sum primitives.

For correct functioning of the method, the stream compaction is not neces-
sary, as the data from each coded block can be transferred separately to the host
computer followed by storage into a continuous array. However, it is worth exam-
ining, as the burst mode for data transfer generally achieves better performance
than the iterative data transfer.

6 Performance Results and Discussion

The block-parallel implementation of integer-based arithmetic coder for GPGPU
was tested on data from the simulation of light scattering [8]. As the test data for
the compression were taken the results of finite-difference time-domain simula-
tion iterations on the grid of 512x512 cells. The distinctive characteristics of the
test data set were low values with highly biased symbol probability distribution,
resulting in very low entropy when using the model described in Sect. 5. The
output of parallel arithmetic encoder running on the GPGPU is decompressed
by sequential decoder runing on the host PC, and the results are verified by byte
comparison functions, as well as the external file comparison tool WinDiff.

Block Parallel GPU Direct Comp. Total Time [ms]
Test Data Set : CR Encode Transf. | Transf
Size [B] Coders Tterat. Burst
T [ms] T[ms] [ms]

1 | Size: IMB 512 2048 438 533 1.69 0.038 4415 589
H=0.00289908 [b/B] 1024 1024 765 525 1.61 0.037 25.20 5.80
CPU Encode T=0.5s 4096 | 256 1727 | 898 1.59 0.06 14.54 946

2 | Size: 4 MB 1024 | 4096 979 11.39 4.44 0.04 87.86 11.97
H=0.00037884 [b/B] 4096 1024 1288 13.50 4.49 0.059 33.52 14.08
CPU Encode T=1.6s 8192 512 1528 15.60 4.40 0.23 26.14 16.67

3 | Size: 16 MB 1024 16384 242 51.22 1613 0.23 354.4 52.05
H=0.01047371 [b/B] 4096 | 4096 293 59.08 15.59 0.37 136 60.19
CPU Encode T=6.5s 8192 2048 304 76.76 16.90 0.56 115 77.86

Table 1. Performance results on test configuration: AMD Athlon 2.41GHz, 2GB RAM,
nVidia GeForce 8800GT 128SPs, 768MB RAM. CUDA 1.0. Total time corresponds to
the time required for compression and transfer of data including the overheads, such
as. alignment, stream compaction and block sizes array transfer.

The performance results in Table 1. show that the parallel implementation
of arithmetic encoder achieves compression ratios (CR) competitive with a se-
quential coder, but in a considerably shorter time, with the compression ratio
approaching the lower entropy bound as the data block size increases. The trans-
fer times for the compressed data (Col. 7) are significantly lower than those for
the direct transfer of data (Col. 6) without any compression; however as the
compression process inevitably introduces an overhead, the gains achieved so far
are mostly in the required space on the GPGPU for the storage of the tempo-
rary results, with more work on the speed optimization of the codec required
for making it a competitive method for reduction of the I/O bandwidth require-
ments. The storage savings are a significant achievement, as the frequency with
which the simulation data needs to be transferred considerably influences over-
all simulation speed-up. If the storage of simulation results requires less space,

there is a more room for the new data, resulting in a lower number of required
memory transfers from the GPGPU to the host computer, and thus a better
overall simulation performance.

7 Conclusions and Future Work

The implementation of the block-parallel arithmetic encoder proved that use
of statistical coding methods for the compression of simulation data directly
on GPGPUs has a potential for the efficient reduction of simulation data size.
The compression ratios of the parallel coder approach entropy as the theoretical
boundary of compression ration with the increasing block sizes. Furthermore,
the parallel implementation exhibits a significant speed-up over the sequential
data compression algorithm, thus showing high potential to reduce influence of
the limited resources for storage and transfer on the simulation performance on
parallel systems. Our ongoing work focuses on optimization of computational
performance of entropy coders. Further work will examine strategies for pre-
processing of simulation data that could account for high compression efficiency
coupled with high processing speed.

References

1. Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans-
actions on Visualization and Computer Graphics 12(5) (2006) 1245-1250 Member-
Peter Lindstrom.

2. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast lossless compression of scientific
floating-point data. In: DCC ’06: Proceedings of the Data Compression Conference,
Washington, DC, USA, IEEE Computer Society (2006) 133-142

3. Roger, D., Assarsson, U., Holzschuch, N.: Efficient stream reduction on the gpu. In
Kaeli, D., Leeser, M., eds.: Workshop on General Purpose Processing on Graphics
Processing Units. (Oct 2007)

4. Sayood, K., ed. In: Lossless Compression Handbook. Academic Press (2003)

5. Howard, P.G., Vitter, J.S.: Arithmetic coding for data compression. Technical
Report Technical report DUKE-TR~-1994-09 (1994)

6. Bodden, E.: Arithmetic coding revealed - a guided tour from theory to praxis.
Technical Report 2007-5, Sable (2007)

7. Boliek, M.P., Allen, J.D., Schwartz, E.L., Gormish, M.J.: Very high speed entropy
coding. (1994) 625-629

8. Balevic, A., Rockstroh, L., Tausendfreund, A., Patzelt, S., Goch, G., Simon, S.:
Accelerating simulations of light scattering based on finite-difference time-domain
method with general purpose gpus. In: Proceedings of 2008 IEEE 11th International
Conference on Computational Science and Engineering. (2008)

