
Parallel Variable-Length Encoding on GPGPUs

Ana Balevic

University of Stuttgart
ana.balevic@gmail.com

Abstract. Variable-Length Encoding (VLE) is a process of reducing
input data size by replacing fixed-length data words with codewords of
shorter length. As VLE is one of the main building blocks in systems for
multimedia compression, its efficient implementation is essential. The
massively parallel architecture of modern general purpose graphics pro-
cessing units (GPGPUs) has been successfully used for acceleration of
inherently parallel compression blocks, such as image transforms and
motion estimation. On the other hand, VLE is an inherently serial pro-
cess due to the requirement of writing a variable number of bits for each
codeword to the compressed data stream. The introduction of the atomic
operations on the latest GPGPUs enables writing to the output memory
locations by many threads in parallel. We present a novel data parallel
algorithm for variable length encoding using atomic operations, which
archives performance speedups of up to 35-50x using a CUDA-enabled
GPGPU.

1 Introduction

Variable-Length Encoding (VLE) is a general name for compression methods
that take advantage of the fact that frequently occurring symbols can be rep-
resented by shorter codewords. A well known example of VLE, Huffman cod-
ing [1], constructs optimal prefix codewords on the basis of symbol probabilities,
and then replaces the original symbols in the input data stream with the corre-
sponding codewords.

The VLE algorithm is serial in nature due to data dependencies in comput-
ing the destination memory locations for the encoded data. Implementation of
a variable length encoder on a parallel architecture is faced by the challenge of
dealing with race conditions when writing the codewords to a compressed data
stream. Since memory is accessed in fixed amounts of bits whereas codewords
have arbitrary bit size, the boundaries between adjacent codewords do not co-
incide with the boundaries of adjacent memory locations. The race conditions
would occur when adjacent codewords are written to the same memory location
by different threads. This creates two major challenges for creating a parallel im-
plementation of VLE: 1) computing destination locations for the encoded data
elements with a bit-level precision in parallel and 2) managing concurrent writes
of codewords to destination memory locations.

In recent years, GPUs evolved from simple graphics processing units to mas-
sively parallel architectures suitable for general purpose computation, also known



as GPGPUs. The NVIDIA GeForce GTX280 GPGPU used for this paper pro-
vides 240 processor cores and supports execution of more than 30,000 threads
at once. In image and video processing, GPGPUs have been used predominantly
for the acceleration of inherently data-parallel functions, such as image trans-
forms and motion estimation algorithms [2–4]. The VLE entropy coding to our
best knowledge has not been implemented on GPUs so far, due to its inherently
serial nature. Some practical compression-oriented approaches on GPUs include
compaction and texture compression. The compaction is a method for removing
unwanted elements from the resulting data stream by using the parallel pre-
fix sum primitive [5]. An efficient implementation of the stream reduction for
traditional GPUs can be found in [6]. The texture compression is a fixed-ratio
compression scheme which replaces several pixels by one value. Although it has
a fast CUDA implementation [7], it is not suitable for codecs requiring a final
lossless encoding pass, since it introduces a loss of fidelity.

We propose a fine-grain data parallel algorithm for lossless compression, and
present its practical implementation on GPGPUs. The paper is organized as
follows: Section 2 gives an overview of GPGPU architecture, in Section 3 we
present a design and implementation of a novel parallel algorithm for variable-
length encoding (PAVLE), and in Section 4, we present performance results and
discuss effects of different optimizations.

2 GPGPU Architecture

The unified GPGPU architecture is based on a parallel array of programmable
processors [8]. It is structured as a set of multiprocessors, where each multi-
processor is composed of a set of simple processing elements working in SIMD
mode. In contrast to CPU architectures which rely on multilevel caches to over-
come long system memory latency, GPGPUs use fine-grained multi-threading
and a very large number of threads to hide the memory latency. While some
threads might be waiting on data to be loaded from the memory, the fine-grain
scheduling mechanism ensures that ready warps of threads (scheduling unit) are
executed, thus providing effectively highly parallel computation resources.

The memory hierarchy of the GPGPU is composed of global memory (high-
latency DRAM on the GPU board), shared memory and register file (low-latency
on-chip memory). The logical organization is as follows: the global memory can
be accessed among all the threads running on the GPU without any restrictions;
the shared memory is partitioned and each block of threads can be assigned one
exclusive partition of the shared memory, and the registers are private to each
thread. When GPU is used as a coprocessor, the data needs to be transferred
first from the main memory of host PC to the global memory. In this paper, we
will assume that the input data is located in the global memory, e.g. as a result
of a computation or explicit data transfer from the PC.

The recent Tesla GPGPU architectures introduce hardware support for atomic
operations. The atomic operations provide a simple method for safely handling
race conditions, which occur when several parallel threads try to access and mod-



ify data at the same memory location, since it is guaranteed that if an atomic
instruction executed by a warp reads, modifies, and writes to the same location
in global memory for more than one of the threads of the warp, each access to
that memory location will occur and will be serialized, but the order in which
they occur is not defined [9]. The CUDA 1.1+ GPU devices support the atomic
operations on 32-bit and 64-bit words in the global memory, while CUDA 1.3
also introduces support for shared memory atomic operations.

3 The Parallel Variable-Length Encoding Algorithm

This section presents the parallel VLE (PAVLE) algorithm for GPGPUs with
hardware support for atomic operations. The parallel variable-length encoding
consists of the following parallel steps: (1) assignment of codewords to the source
data, (2) calculation of the output bit positions for compressed data (codewords),
and finally (3) writing (storing) codewords to the compressed data array. A high-
level block-diagram of the PAVLE encoder is given in Fig. 1. Pseudocode for the

Fig. 1. Block diagram of PAVLE algorithm.

parallel VLE is given in Listing 1 with lines 2 - 5 representing the step 1, lines 6 -
8 being the step 2 and lines 9 - 28 representing the step 3. The algorithm can be
simplified if one assumes a maximal codeword length, as is done in the case for
the JPEG coding standard. Restricting the codeword size reduces the number of
control dependencies and also reduces the amount of temporary storage required,
resulting in much greater kernel efficiency.

3.1 Codeword Assignment to Source Data

In the first step, variable-length codewords are assigned to the source data. The
codewords can be either computed using an algorithm such as Huffman [10], or
they can be predefined, e.g. as it is frequently the case in image compression
implementations. Without loss of generality, we can assume that the codewords
are available and stored in a table. This structure will be denoted as the codeword
look-up table (codeword LUT). Each entry in the table contains two values: the
binary code for the codeword, and codeword length in bits, denoted as a (cw,
cwlen) pair. Our implementation uses an encoding alphabet of up to 256 symbols,
with each symbol representing one byte. During compression, each source data
symbol (byte) is replaced with the corresponding variable-length codeword.



The PAVLE is designed in a highly parallel manner, with one thread pro-
cessing one data element. The threads load source data elements and perform
codeword look-up in parallel. As the current GPGPU architecture provides more
efficient support for 32-bit data types, the source data is loaded as 32-bit un-
signed integers to shared memory, where it is processed by blocks of threads. The
32-bit data values are split into four byte symbols, which are then assigned cor-
responding variable-length codewords from the codeword LUT. The codewords
are locally concatenated into an aggregate codeword, and the total length of the
codeword in bits is computed.

Algorithm 1 Parallel Variable Length Encoding Algorithm
1: k ← tid
2: for threads k = 1 to N in parallel
3: symbol← data[k]
4: cw[k], cwlen[k]← cwtable[symbol]
5: end for
6: for threads k = 1 to N in parallel
7: bitpos[1..N ]← prefixsum(cwlen[1..N ])
8: end for
9: for threads k = 1 to N in parallel

10: kc← bitpos[k] div ws
11: startbit← bitpos[k] mod ws
12: while cwlen[k] > 0 do
13: numbits← cwlen[k]
14: cwpart← cw[k]
15: if startbit + cwlen > wordsize then
16: overflow ← 1
17: numbits← wordsize− startbit
18: cwpart← first numbits of cw[k]
19: end if
20: put bits atomic(out, kc, startbit, numbits, cwpart)
21: if overflow then
22: kc← kc + 1
23: startbit← (startbit + numbits) mod wordsize
24: remove first numbits from cw[k]
25: cwlen[k]← cwlen[k]− numbits
26: end if
27: end while
28: end for

3.2 Computation of the Output Positions

To store the data which does not necessarily match the size of addressable mem-
ory locations, it is necessary to compute the destination address in the mem-
ory and also the starting bit position inside the memory location. Since in the



previous parallel step the codewords were assigned to input data symbols, the
dependency in computation of the codeword output locations can be resolved
based on the knowledge of the codeword lengths. The output parameters for each
codeword are determined by computing the number of bits that should precede
each codeword in the destination memory. The bit offset of each codeword is
computed as a sum of assigned codeword lengths of all symbols that precede
that element in the source data array. This can be done efficiently in parallel by
using a prefix sum computation.

The prefix sum is defined in terms of a binary, associative operator +. The
prefix sum computation takes as input a sequence x0, x1, ..., xn−1 and produces
an output sequence y0, y1, ..., yn−1 such that y0 = 0 and yk = x0 +x1 + ...+xk−1.
We use a data-parallel prefix sum primitive [11] to compute the sequence of out-
put bit offsets yk on the basis of codeword lengths xk, that were assigned to
source data symbols. A work-efficient implementation of parallel prefix sum per-
forms O(n) operations in O(log n) parallel steps, and it is the asymptotically
most significant component in the algorithmic complexity of the PAVLE algo-
rithm. Given the bit positions at which each codeword should start in the com-

Fig. 2. An example of the variable-length encoding algorithm.

pressed data array in memory, the output parameters can be computed knowing
the fixed machine word size, as given in the lines 10-11 of the pseudocode.It
is assumed that the size of addressable memory locations is 32-bits, and it is
denoted as wordsize. The variable k is used to denote the unique thread Id. It
also corresponds to the index of data element processed by the thread k in the
source data array. The kc denotes index of the destination memory word in com-
pressed data array, and startbit corresponds to the starting bit position inside
that destination memory word.

Fig. 2 is given as an illustration of the parallel computation of the output
index and starting bit position on a block of 8 input data elements: The first
two steps of the parallel encoding algorithm result in the generation of match-
ing codewords for the input symbols, codeword lengths (as the number of bits),
and output parameters for the memory writes to the output data stream. The



number of bits for each compressed data block is obtained as a byproduct of
the first phase of the parallel prefix sum algorithm. Since a simple geometric
decomposition is inherently applied on the GPUs as a step of the mapping pro-
cess, this result can be used for concatenating the compressed data blocks into
a contiguous array prior to data transfers from GPU to system memory.

3.3 Parallel Bit-Level Output

Bit-level I/O libraries designed for general-purpose CPUs process data serially,
i.e., the codewords are stored one after the other into the memory. Implemen-
tation of a VLE on a parallel architecture introduces a problem of correctly
dealing with race conditions that occur when different threads attempt to write
their codewords to a same memory location. A recently introduced hardware
support for atomic bitwise operations enables efficient execution of concurrent
threads performing bit-level manipulations on the same memory locations, thus
providing a mechanism for safely handling race conditions. The parallel output
of codewords will produce correct results regardless of the write sequence, pro-
vided that each sequence of read-modify-write operations on a single memory
location can be successfully completed without interruption, and that each out-
put operation operation changes only the precomputed part of the destination
word. The parallel bit-level output is executed in two stages: First, the contents

Fig. 3. Setting memory contents at index kc to the desired bit-values (codeword).

of the memory location at the destination address are prepared for the output
by masking the numbits number of bits corresponding to the length of the code-
word starting from the pre-computed bit output position. Second, the bits at
these positions in the destination location are set to the value of the codeword,
as illustrated in Fig. 3. If the contents of the destination memory are set in
advance (all zeros), the output method can be reduced to only one atomic or
operation. The implementation of the put bits atomics procedure for the GPG-
PUs supporting atomic operations (CUDA1.1+ compatible) is given in the code
listing below.

A situation when a codeword crosses boundaries of a destination word in
memory can occur during variable length encoding, e.g., when the startbit is near



the end of the current word, and the codeword to be written requires more bits
than what is available in the reminder of the current word. The crossing of the
word-boundary is detected and handled by splitting the output of the codeword
into two or more store operations. When the codeword cross boundaries of several
machine words, some of the atomic operations can be replaced by the standard
store operation. The inner parts of the codeword can be simply stored to the
destination memory location(s), and only the remaining bits on both sides of
the codeword need to be set using the atomic operations.

device void put bits atomic(unsigned int∗ out, unsigned int kc,
unsigned int startbit, unsigned int numbits,
unsigned int codeword) {

unsigned int cw32 = codeword;
unsigned int restbits = 32−startbit−numbits;

#ifndef MEMSET0
unsigned int mask = ((1<<numbits)−1);
mask <<= restbits;
atomicAnd(&out[kc], ˜mask);

#endif

if ((startbit == 0) && (restbits == 0)) out[kc] = cw32;
else atomicOr(&out[kc], cw32 << restbits);

}

4 Performance Results

Performance of several kernel implementations was benchmarked on a PC with
an 2.66 GHz Intel QuadCore CPU, 2 GB RAM memory, and a NVIDIA GeForce
GTX280 GPU supporting atomic instructions on 32-bit words. The test data set
was composed of randomly generated test data files of different sizes and different
amount of information content (entropy between 0.5-8 bits/symbol). The test
files were assigned variable-length codewords using the Huffman algorithm with
the restriction on the maximal codeword length. The performance of a CPU
encoder running on one 2.66 GHz CPU core is given as a reference. Fig. 4(a)
gives a performance comparison on a data set with 2.2 bits/symbol entropy. The
GPU encoder gm32 concatenates codewords for every 4 consecutive symbols
(bytes) and writes the aggregate codeword to the GPU memory using global
memory atomic operations. The performance of the serial encoder and the global
memory (GM) encoder gm32 are closely matching. However, by performing the
atomic operations on a temporary buffer in shared memory (SM), as in sm32,
a speed-up of more than an order of magnitude is achieved. The performance
of the scan kernel, which is the asymptotically dominant part of the parallel
algorithm, is given as a reference.

The gm32 and sm32 kernels operate under the assumption that the size
of the aggregate codeword for four consecutive symbols (bytes) will not exceed



0.25 0.5 1 2 4 8 16 32

0.25

0.5

1

2

5

10

20

50

100

200

500

Data size [MB]

T
im

e 
[m

s]

 

 
cpu
gm32
sm32
scan1

(a) CPU and GPU Kernels

0.25 0.5 1 2 4 8 16 32

0.25

0.5

1

2

5

10

20

50

100

200

500

Data size [MB]

T
im

e 
[m

s]

 

 
cpu
gm32
gm32 (CCWLUT)
sm64huff
sm64huff (CCWLUT)
scan1

(b) Codeword LUT caching

Fig. 4. Kernel execution times as a function of data size.

the original data length, i.e. it will always fit into one 32-bit word. When using
Huffman codewords, it may happen that the aggregate codeword exceeds the
original data size. We designed a second SM kernel, denoted as sm64huff, that
has a temporary buffer for the aggregate codeword of twice the original data
size (a typical buffer size in compression implementations). The performance of
sm64huff is slightly lower than the performance of sm32 kernel, since it must
perform one additional test during the codeword output. The situation when
a codeword spans more than two destination memory locations is however cor-
rectly supported. In this case, no atomic operation is needed for the part of the
codeword that spans an entire memory location, and a standard store operation
can be used. However, empirical evaluation showed that atomic operations on
the shared memory are implemented very efficiently, and that introduction of
the additional test actually hurts the performance due to the increased warp
serialization.

Additional performance improvements can be achieved by caching the code-
word LUT, instead of looking up the codeword for each symbol in the global
memory every time a symbol occurs. Fig. 4(b) gives a comparison of kernel exe-
cution times when the codeword look-ups are performed on the shared memory.
Similar results are achieved by using the texture memory, which is cached by
each multiprocessor. Use of low-latency shared memory for caching the code-
word LUT improved the performance of GM kernels by approximately 20%, and
the performance of SM kernels by up to 55%. As the symbols that appear more
frequently are replaced by the codewords of shorter length, the low entropy data
(well-compressible) will result in more shorter codewords that should be stored
by different threads at the same memory location. This issue could be miti-
gated by processing more than one 32-bit data element per thread. The average
number of bits that are written by each thread in one atomic operation to the
destination memory location is increased and fewer atomic operations are issued.

Additionally, increasing DPT reduces the total number of data elements that
is processed by the prefix sum (scan), which significantly influences the run time.



0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

Data size [MB]

T
im

e 
[m

s]

 

 
sm64huff (CCWLUT)
scan1
dpt (DPT=4,CCWLUT)
dpt (DPT=4,CCWLUT,CSRC)
scan2

(a) Comparison of standard and DPT
kernels

0 5 10 15 20 25 30 35

0

2

4

6

8

10

12

14

16

18

Data size [MB]

T
im

e 
[m

s]

 

 
dpt (DPT=1,CCWLUT)
dpt (DPT=1,CCWLUT,CSRC)
dpt (DPT=2,CCWLUT)
dpt (DPT=2,CCWLUT,CSRC)
dpt (DPT=4,CCWLUT)
dpt (DPT=4,CCWLUT,CSRC)
dpt (DPT=8,CCWLUT)

(b) DPT Parameter effects

Fig. 5. Effects of processing more data per thread (lin scale).

Fig. 5(a) shows performance gains using the ideal DPT value; performance of
scan using the original and reduced number of blocks are given as a reference.
Additional improvements are achieved by (1) caching the codeword LUT as pre-
viously described, and (2) caching aggregate codewords for every DPT elements
in a local buffer. However, further increasing DPT radically increases memory
requirements, since data is compressed in a shared memory buffer prior to trans-
fer to the global memory. Fig. 5(b) gives a comparison of run times using several
different DPT values. The investigation showed that the maximal DPT is lim-
ited by the shared memory requirements, and is relatively low (DPTmax = 8
when only codeword table is cached, and DPTmax = 4 when also aggregate
codewords are cached). The best results are obtained using DPT= 4, resulting
in a 35x speed-up.

5 Conclusion

In this paper, we presented a method for parallel bit-level output of data and a
novel parallel algorithm for variable-length encoding (PAVLE) for GPGPU archi-
tectures supporting atomic operations. The PAVLE algorithm was implemented
on a CUDA1.3-enabled GPGPU using atomic operations on the shared mem-
ory for managing concurrent codeword writes, parallel prefix sum for computing
the codewords offsets in compressed data stream and caching of the codeword
look-up tables in the low-latency memory. The optimized version of PAVLE for
CUDA 1.3 compatible GPGPUs achieves performance of approximately 4GB/sec
using Huffman codes for encoding the data on the NVIDIA GeForce GTX280
GPGPU. We observed considerable speedups compared to the serial VLE on the
state of the art PCs (up to 35x on 2.66GHz CPU, and up to 50x on a 2.40GHz
CPU), thus making the PAVLE an attractive lossless compression algorithmic
building block for GPGPU-based applications.



Acknowledgments The authors would like to thank Glenn R. Luecke for his
support and his invaluable comments on the manuscript. Special thanks go to
Tjark Bringewat for benchmarking and very constructive discussions on GPGPU
kernel optimizations.

References

1. Huffman, D.: A method for the construction of Minimum-Redundancy codes.
Proceedings of the IRE 40(9) (1952) 1098–1101

2. Allusse, Y., Horain, P., Agarwal, A., Saipriyadarshan, C.: GpuCV: an opensource
GPU-accelerated framework forimage processing and computer vision. 2006 IEEE
International Conference on Multimedia and Expo (2008)

3. Chen, W., Hang, H.: H. 264/AVC motion estimation implmentation on Compute
Unified Device Architecture (CUDA). In: 2008 IEEE International Conference on
Multimedia and Expo. (2008) 697–700

4. Fung, J., Mann, S.: Using graphics devices in reverse: GPU-based image processing
and computer vision. In: 2008 IEEE International Conference on Multimedia and
Expo. (2008) 9–12

5. Blelloch, G.E.: Prefix sums and their applications. Synthesis of Parallel Algorithms
(1990) 35—60

6. Roger, D., Assarsson, U., Holzschuch, N.: Efficient stream reduction on the gpu. In
Kaeli, D., Leeser, M., eds.: Workshop on General Purpose Processing on Graphics
Processing Units. (Oct 2007)

7. Ignacio Castaño: High quality dxt compression using cuda. Technical report,
NVIDIA (last access: May, 2008)

8. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A unified
graphics and computing architecture. Micro, IEEE 28(2) (2008) 39–55

9. NVIDIA Corporation Technical Staff: Nvidia cuda -programming guide 2.0. Tech-
nical report, NVIDIA (last access: May, 2009)

10. Atallah, M., Kosaraju, S., Larmore, L., Miller, G., Teng, S.: Constructing trees in
parallel. In: Proceedings of the first annual ACM symposium on Parallel algorithms
and architectures, ACM New York, NY, USA (1989) 421–431

11. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with cuda. GPU
Gems 3 (2007)


