
GPGPU LAB

Case study: Finite-Difference Time-
Domain Method on CUDA

Ana Balevic

IPVS 1

Finite-Difference Time-Domain Method

• Numerical computation of solutions to partial differential equations

• Explicit E-Field update (wave) equation:

2







2

2

e e

(, , 1) 2 1 2() (, ,) (, , 1)

() (1, ,) (, 1,) (, 1,) (1, ,)

(, ,) (, , 1) .

y y y

y y y y

y y

E nx nz nt t E nx nz nt E nx nz nt

t E nx nz nt E nx nz nt E nx nz nt E nx nz nt

t J nx nz nt J nx nz nt

Suitable for parallel
processing across
spatial domain!



e

 ~

, , ~ space and time coordinates

 constant time step

~ electric field

~ excitation

y

y

nx nz nt

t

E

J

Pseudocode:

for nt=1 to NT do
for nx = 1 to NX do

for nz = 1 to NZ do
Wave Equation
Apply Excitation
Apply Boundary Condition

end
end

end

IPVS

Visual Demonstration
• Grid size:

256 x 256

• Time
steps:
260

3 IPVS

Issues: Neighborhood Operations

• Mapping: data element – processing thread

• Data partitioning causing dependencies of data blocks:

4IPVS

• Cells on the boundary of each data
block are used for the computation
by the neighboring thread block

• Avoid RAW data hazard (design to
avoid race conditions!):

• must exchange values of
boundary block cells w.
neighboring thread blocks
between time iterations

Issues: Neighborhood Operations

• GPGPU Architecture limitation:

– No message passing

– Shared Memory – Yes, but exclusive partition for each thread
block

– Synchronization:
• Barrier synchronization on the thread block level
• No synchronization mechanism on the grid level
• Requires synchronization between time steps by terminating

and again launching kernel on device, and overlapping loads
of block boundary cells

IPVS 5

Finite-Difference – Mapping to GPGPU cont’d

• FDTD: Inherent data dependencies

1. Flow control instructions (if, switch, do, for , while)
impact the effective instruction throughput by causing
threads of the same warp* to diverge => serialized execution.

2. Avoidable by different memory access patterns => inefficient?

Explore design space and compare tradeoffs:
branching vs. memory access patterns

6IPVS

Note: warp = set of threads = scheduling unit on GPU

Effects of Memory Access Patterns

• Mode 1:

– Additional loads per thread for fetching elements from
the boundary of neighboring blocks

– e.g. 16x16 Data Block => 16x16 Thread Block

– Requires branching logic

• Mode 2:

– Additional threads for fetching elements from the
boundary of neighboring blocks

– e.g. 16x16 Data Block => 18x18 Thread Block

– No branching logic, but unaligned memory access

IPVS 7

FDTD Computation: Mode 1

• Simple example: 1 row of the surface containing 4x12 cells:

IPVS 8

Global memory
1. Partitioning of
simulation data
into data blocks
(in the GPU global
memory)

2. Parallel load of data blocks into
the shared memory
(1 or more loads/thread)

Block of threads
(1 row)

Shared memory partition

4. Computation (and storage) of new values
by block threads in parallel (all working).

3. Boundary threads
perform additional
loads from the global
memory: Missing
neighboring data into
registers.

FDTD Computation: Mode 2
• Example: 1 row of the surface containing 4x12 cells:

IPVS 9

Global memory
1. Partitioning of
simulation data
into data blocks
(in the GPU global
memory)

2. Parallel load of data
blocks into the shared
memory (only 1 load/thr)

Block of threads
(1 row)

Shared memory partition

4. Parallel computation of new values by threads
(only inner threads working).

3.Additional threads
load neighboring data
into shared memory.
(more threads, larger
SM partition required)

Analysis: Coalesced Memory Accesses

• The global memory space is not cached and memory
latency high => important to follow the right access
pattern (coalesced access) to get maximum memory
bandwidth

• The coalesced global memory
access conditions:

1. Threads must access 32-bit words, resulting in one 64-byte
memory transaction

2. All 16 words must lie in the same segment of size equal to the
memory transaction size

3. Threads must access the words in sequence: The kth thread in
the half-warp must access the kth word.

• Otherwise, a separate memory transaction is issued for
each thread. Order of magnitude lower bandwidth for
uncolaesced access on single-precision floats!

10

coalesced uncoalesced

IPVS

Conclusion of experiments: branches have less impact on the kernel performance
than uncoalesced memory accesses! Optimize memory accesses first!

Multiprocessor Utilization

Resource Utilization:

Threads Per Block 256

Registers Per Thread 8

Shared Memory Per Block [B] 1060
11

GPU Occupancy Data

Active Threads per Multiprocessor 768

Active Warps per Multiprocessor 24

Active Thread Blocks per Multiprocessor 3

Occupancy of each Multiprocessor 100%

Maximum Simultaneous Blocks per GPU 48

Block Size
256

0

6

12

18

24

16 80 144 208 272 336 400 464

M
u

lt
ip

ro
c
e
s
s
o

r
W

a
rp

 O
c
c
u

p
a
n

c
y

Threads Per Block

Varying Block Size

Register
Count 8

0

6

12

18

24

0 4 8 12 16 20 24 28 32

M
u

lt
ip

ro
c

e
s

s
o

r
W

a
rp

 O
c

c
u

p
a

n
c

y

Registers Per Thread

Varying Register Count Shared
Memory

1060

0

6

12

18

24

0 1
0
2
4

2
0
4
8

3
0
7
2

4
0
9
6

5
1
2
0

6
1
4
4

7
1
6
8

8
1
9
2

9
2
1
6

1
0
2
4
0

1
1
2
6
4

1
2
2
8
8

1
3
3
1
2

1
4
3
3
6

1
5
3
6
0

1
6
3
8
4

M
u

lt
ip

ro
c

e
s
s
o

r
W

a
rp

 O
c
c
u

p
a

n
c
y

Shared Memory Per Thread Block

Varying Shared Memory Usage

IPVS

Goal: maximize utilization of the GPGPU multiprocessors
Design space: underlying hardware architecture, kernel configuration
parameters, memory footprint of the kernel

FDTD Computation on GPGPU: Performance Results

12

50x

Surface Size

(Cells)

Grid Size

(Blocks)

GPU (ms) Data Transf.

(ms)

CPU (ms) Ratio

CPU

/GPU

1048576 64x64 0.78 5.71 28.61 36.68

4194304 128x128 2.36 19.44 113.89 48.26

16777216 256x256 8.69 68.95 443.65 51.05

IPVS

Number of Blocks/Grid Number of Blocks/Grid

Ke
rn

el
 E

xe
cu

ti
o

n
 T

im
e

(1
 it

.)
[m

s]

R
at

io
 o

f
A

vg
. E

xe
cu

ti
o

n
 T

im
e

 (
C

P
U

/G
P

U
)

[m
s]

Direct3D visualization of CUDA-
assisted scientific calculations

13IPVS

Introduction

• CUDA – allows compute-intensive tasks to be off-
loaded onto the GPU

• Goal: since all data are already in video
memory, display them on the fly by making use of
the GPU’s traditional rendering capabilities

Requires CUDA to interact with a graphics API
(Direct3D, OpenGL)

14 IPVS

CUDA-Direct3D Interaction

• Framework interconnection:

15 IPVS

CUDA

Direct3D

Windows API

Application

Graphics
hardware

Windows API: Event Model

• Workflow:

• Event occurs

• Windows sends a message to the application the event occurred for

• Message is added to the application’s message queue

• Application constantly checks its message queue in a message loop

• If it receives a message, it dispatches it to the window procedure of the
particular window the message is for

16 IPVS

Message
queue

Event
Message

loop
Window

procedure

Windows API: A Minimal Application

• Required components and steps:

– WinMain(args) function
• Register a window class

• Create a window based on the newly registered class

• Show the window

• Enter the message loop

– Window procedure
• Handle selected events

• Pass unhandled events to a default window procedure

17 IPVS

CUDA-Direct3D Interaction

• Framework interconnection:

18 IPVS

CUDA

Direct3D

Windows API

Application

Graphics
hardware

Direct3D: Prerequisites
• Download and install the DirectX SDK

http://msdn.microsoft.com/en-us/directx/default.aspx

• Add d3d9.lib and d3dx9.lib to the linker input
files

Project > Properties > Linker > Input > Additional Dependencies when
working with Visual Studio

• Update include and library search paths
should not be necessary when working with Visual Studio

19 IPVS

http://msdn.microsoft.com/en-us/directx/default.aspx
http://msdn.microsoft.com/en-us/directx/default.aspx
http://msdn.microsoft.com/en-us/directx/default.aspx

Direct3D: A Minimal Application

• WinMain(args) function
– Register a window class

– Create a window based on the newly registered class

– Call InitD3D(args)

– Call InitGeometry()

– Show the window

– Enter the message loop calling Render() as idle function

• InitD3D(args) function
– Create a Direct3D context and associate it with the newly created window

• InitGeometry() function
– Create the geometry that we want to display

• Render() function
– Render the afore-created geometry

20 IPVS

Direct3D: A Minimal Application (2)

21 IPVS

Direct3D: Vertex and Index Buffers

• Geometry is stored on the graphics hardware in the form of vertex buffers
and index buffers

• Vertex buffer: array of vertices (unstructured geometry)

• Index buffer: array of indices into the vertex buffer (topology)

• Vertex: a point in 3D space that may have additional properties (e.g. color)

• Index: an integer identifying a certain element in a vertex buffer

22 IPVS

(0,0) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3) (2,0) (2,1) (2,2) (2,3)

0 1 5 5 4 0 1 2 6 6 5 1 2 3 7 7 6 2

4 5 9 9 8 4 5 6 10 10 9 5 6 7 11 11 10 6

Vertex buffer

Index buffer

CUDA-Direct3D Interaction

• Framework interconnection:

23 IPVS

CUDA

Direct3D

Windows API

Application

Graphics
hardware

FDTD Visualization

• Idea: represent the simulation grid by a flat
triangle mesh

– Each vertex corresponds to the respective grid cell

– Vertex color represents the data value

– Update vertex colors after each simulation step by
mapping the vertex buffer into the CUDA address
space

24 IPVS

FDTD Visualization (2)

25 IPVS

CUDA & Direct3D: Final Application
• WinMain(args) function

– Register a window class

– Create a window based on the newly registered class

– Call InitD3D(args)

– Call InitGeometry()

– Start a CUDA-Direct3D interoperability session

– Register the vertex buffer to CUDA

– Show the window

– Enter the message loop calling Render() as idle function

• InitD3D(args) function
– Set CUDA and Direct3D to operate on the same device

– Create a Direct3D context and associate it with the newly created window

• Render() function
– Run the CUDA computation and update the vertex buffer accordingly

– Render the triangle mesh

26 IPVS

FDTD Visualization: Final Output

27 IPVS

